
Logarithmic Schrödinger equation and isothermal fluids

Rémi Carles

Part 1. Logarithmic Schrödinger equation

1. Linear equations

1.1. Heat equation.

∂tu =
1

2
∆u, x ∈ Rd, u|t=0 = u0 ∈ L1(Rd).

Explicit solution : u(t, x) =
1

(2πt)d/2

∫
Rd
e−
|x−y|2

2t u0(y)dy.

Large time description:

û(t, ξ) = e−
t
2 |ξ|

2

û0(ξ) = e−
t
2 |ξ|

2

û0(0)︸ ︷︷ ︸
order t−d/(2p) in Lp

+ e−
t
2 |ξ|

2

(û0(ξ)− û0(0))︸ ︷︷ ︸
O
(
|ξ|e−

t
2
|ξ|2

)
: order t−(d+1)/(2p) in Lp

If m :=
∫
Rd u0 6= 0,

(t, x) ∼
t→∞

m

(2πt)d/2
e−|x|

2/(2t).

1.2. Schrödinger equation.

i∂tu+
1

2
∆u = 0, x ∈ Rd, u|t=0 = u0 ∈ L2(Rd).

Explicit solution : u(t, x) =
1

(2iπt)d/2

∫
Rd
ei
|x−y|2

2t u0(y)dy.

Two consequences:

• Dispersion: ‖u(t)‖L∞(Rd) .
1

|t|d/2
‖u0‖L1(Rd).

• Large time description: ‖u(t)−A(t)u0‖L2(Rd) −→t→±∞
0, where

A(t)u0(x) =
1

(it)d/2
û0

(x
t

)
ei
|x|2
2t .

Universal oscillation, but the profile depends on the initial data.

Example 1.1 (Explicit computation in the Gaussian case).

Re z > 0 : ei
t
2 ∆

(
e−z

|x|2
2

)
=

1

(1 + itz)d/2
e−

z
1+itz

|x|2
2 .

1
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2. Nonlinear Schrödinger equation

For λ ∈ R, 0 < σ < 2
(d−2)+

, consider:

(2.1) i∂tu+
1

2
∆u = λ|u|2σu, x ∈ Rd, u|t=0 = u0 ∈ H1(Rd).

2.1. Invariants. Space and time translations.
Gauge.

Galilean: if u(t, x) solve NLS, then for any v ∈ R, so does u(t, x− vt)eiv·x−i|v|
2t/2.

Useful to construct multisolitons.
Formal conservations:

M(u(t)) = ‖u(t)‖2L2(Rd),

J(u(t)) := Im

∫
Rd
ū(t, x)∇u(t, x)dx,

E(u(t)) :=
1

2
‖∇u(t)‖2L2(Rd) +

λ

σ + 1
‖u(t)‖2σ+2

L2σ+2(Rd)
.

2.2. Defocusing case. If λ > 0: global existence (u ∈ L∞(R;H1(Rd))), and
if σ > 2/d,

∃u+ ∈ H1(Rd), ‖u(t)− ei t2 ∆u+‖H1(Rd) −→
t→∞

0.

The (inverse of) the wave operator is not trivial: u0 7→ u+ is one-to-one.

2.3. Focusing case. If λ < 0: finite time blow-up is possible when σ > 2/d,

lim
t→T∗

‖∇u(t)‖L2 =∞.

For σ > 2/d, small data scattering.
Existence of large stationary solutions: u(t, x) = eiωtψ(x), ψ ground state.

Orbitally stable iff σ < 2/d.

3. Logarithmic Schrödinger equation

(3.1) i∂tu+
1

2
∆u = λ ln

(
|u|2
)
u, u|t=0 = u0,

with x ∈ Rd, d > 1, and λ ∈ R.
Introduced in [5] to satisfy the following tensorization property: if the initial

datum is a tensor product,

u0(x) =

d∏
j=1

u0j(xj),

then the solution to (3.1) is given by

u(t, x) =

d∏
j=1

uj(t, xj),

where each uj solves a one-dimensional equation,

i∂tuj +
1

2
∂2
xjuj = λ ln

(
|uj |2

)
uj , uj|t=0 = u0j .

The logarithmic nonlinearity is the only one satisfying such a property.
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3.1. Invariants. Same as before, and

M(u(t)) = ‖u(t)‖2L2(Rd),

J(u(t)) := Im

∫
Rd
ū(t, x)∇u(t, x)dx,

E(u(t)) :=
1

2
‖∇u(t)‖2L2(Rd) + λ

∫
Rd
|u(t, x)|2

(
ln |u(t, x)|2 − 1

)
dx.

Dispersive vs. nondispersive?
Size: If u solves (3.1), then for all k ∈ C, so does

uk(t, x) := ku(t, x)eitλ ln |k|2 .

This shows that the size of the initial data alters the dynamics only through a
purely time dependent oscillation, a feature which is fairly unusual for a nonlinear
equation. For k > 0,

d

dk
uk(t, x) = (1 + 2it)u(t, x)eitλ ln |k|2 .

No limit as k → 0 for t > 0: the flow map u0 7→ u(t) cannot be C1, whichever func-
tion spaces are considered for u0 and u(t), respectively; it is at most Lipschitzean.

4. Cauchy problem

W :=
{
u ∈ H1(Rd) , x 7→ |u(x)|2 ln |u(x)|2 ∈ L1(Rd)

}
.

Theorem 4.1 ([19]). λ < 0, u0 ∈ W : unique, global solution u ∈ C(R;W ).
The mass M(u) and the energy E(u) are independent of time.

• Proof by compactness arguments, using a regularization of the nonlinear-
ity.

• Alternative proof by Masayuki Hayashi [27], proving the strong conver-
gence of a sequence of approximate solutions.

Globalization: a priori estimates

0 6 E+(u(t)) :=
1

2
‖∇u(t)‖2L2(Rd) + λ

∫
|u|<1

|u(t, x)|2 ln |u(t, x)|2dx

6 E(u0) −λ︸︷︷︸
+|λ|

∫
|u|>1

|u(t, x)|2 ln |u(t, x)|2dx.

Since the logarithm grows slowly,∫
|u|>1

|u(t, x)|2 ln |u(t, x)|2dx 6 Cε
∫
|u|>1

|u(t, x)|2+εdx

. ‖u(t)‖2+ε−εd/2
L2(Rd)

‖∇u(t)‖εd/2
L2(Rd)

,

provided that ε < 2d/(d− 2)+. Using the conservation of mass,

E+(u(t)) 6 E(u0) + CεE+ (u(t))
εd/4

.

Remark 4.2. Case λ > 0: globalization would require the control of∫
|u|<1

|u(t, x)|2 ln
1

|u(t, x)|2
dx 6 Cε

∫
|u|<1

|u(t, x)|2−εdx.
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Uniqueness:

Lemma 4.3 ([19]). We have∣∣Im ((z2 ln |z2|2 − z1 ln |z1|2
)

(z̄2 − z̄1)
)∣∣ 6 4|z2 − z1|2 , ∀z1, z2 ∈ C .

+ show that actually, u ∈ C(R;L2).

Another compactness method:

(4.1) i∂tu
ε +

1

2
∆uε = λ ln

(
ε+ |uε|2

)
uε, uε|t=0 = u0.

Assuming u0 ∈ H1, 〈x〉α u0 ∈ L2 for some 0 < α 6 1.

5. Special solutions

Important general property:

i∂tu+
a(t)

2
∂2
xu = b(t)

x2

2
u ; u|t=0 = u0.

If u0 is Gaussian, so is u(t, ·).

5.1. General computation. Suppose d = 1, and plug u(t, x) = b(t)e−a(t)x2/2

into (3.1):

iḃ− iȧx
2

2
b− ab

2
+ a2x

2

2
b = λ

(
ln
(
|b|2
)
− (Re a)x2

)
b,

hence

iȧ− a2 = 2λRe a ; iḃ− ab

2
= λb ln

(
|b|2
)
.

We can express b as a function of a:

b(t) = b0 exp

(
−iλt ln

(
|b0|2

)
− i

2
A(t)− iλ Im

∫ t

0

A(s)sds

)
,

where we have set A(t) :=

∫ t

0

a(s)ds. So we focus on

iȧ− a2 = 2λRe a, a|t=0 = a0 = α0 + iβ0.

We seek a of the form a = −i ω̇
ω

.

We get: ω̈ = 2λω Im
ω̇

ω
.

Polar decomposition: ω = reiθ,

r̈ − (θ̇)2r = 2λrθ̇ ; θ̈r + 2θ̇ṙ = 0.

Notice that

θ̇|t=0 = α0 ,

(
ṙ

r

)
|t=0

= −β0 .

We decide r(0) = 1 so θ̇(0) = Re a0 = α0 and ṙ(0) = − Im a0 = −β0. Note

d

dt

(
r2θ̇
)

= r
(

2ṙθ̇ + rθ̈
)

= 0 ,

and we can express the problem in terms of r only:

a(t) =
α0

r(t)2
− i ṙ(t)

r(t)
, r̈ =

α2
0

r3
+ 2λ

α0

r
, r(0) = 1 , ṙ(0) = −β0 .
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Multiply by ṙ and integrate:

(5.1) (ṙ)2 = β2
0 + α2

0 −
α2

0

r2
+ 4λα0 ln |r|.

Cauchy-Lipschitz: local solution.
Supposing r → 0 leads to a contradiction:

r(t) > δ > 0, t > 0.

5.2. Nondispersive case: λ < 0. In view of (5.1), r is bounded.
Every solution is periodic in time: breather.
Particular case: β0 = 0, α0 = −2λ implies r ≡ 1.

uω(t, x) = eiωte
d
2−

ω
2λ eλ|x|

2

.

Soliton, for all ω ∈ R. Known as Gausson [6].

5.3. Dispersive case: λ > 0. We can prove: for t > T , r̈ > 0, and r(t)→∞
as t→∞. Hence

r̈eff =
2λα0

reff
(α0 > 0).

Up to scaling (and initial data): τ̈ =
2λ

τ
.

By integration,

ṙeff =
√
C0 + 4λα0 ln reff ,

ṙeff =
√
C0 + 4λα0 ln reff .

Separate variables: ∫ reff dz√
C0 + 4λα0 ln z

= t− T.

Set y =
√
C0 + 4λα0 ln z. The left hand side becomes

1

2λα0

∫ Y

e(y2−C0)/(4λα0)dy.

Dawson function:∫ x

ey
2

dy ∼
x→∞

1

2x
ex

2

=⇒ reff√
C0 + 4λα0 ln reff

∼
t→∞

t.

Since reff →∞,
reff√

4λα0 ln reff

∼
t→∞

t, hence

reff(t) ∼
t→∞

2t
√
λα0 ln t.

Crucial remark: C0 has disappeared (at leading order). All the Gaussian solutions
have the same asymptotic profile, with a nonstandard dispersion.

6. Solitons

Lemma 6.1 ([17]). Let λ < 0 and k <∞ such that

Lk := {u ∈W, ‖u‖L2(Rd) = 1, E(u) 6 k} 6= ∅ .
Then inf

u∈Lk
16p6∞

‖u‖Lp(R) > 0.

No solution is dispersive in the case λ < 0.
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6.1. Gaussons. Solutions

uω(t, x) = eiωte
d
2−

ω
2λ eλ|x|

2

are orbitally stable: [17] for the radial case, [2] for the general case (proof based on
the logarithmic Sobolev inequality).

Theorem 6.2 ([17, 2]). Let λ < 0 and ω ∈ R. Set

φω(x) = e
d
2−

ω
2λ eλ|x|

2

.

For any ε > 0, there exists η > 0 such that if u0 ∈ W satisfies ‖u0 − φω‖X < η,
then the solution u to (3.1) exists for all t ∈ R, and

sup
t∈R

inf
θ∈R

inf
y∈Rd

‖u(t)− eiθφω(· − y)‖W < ε.

6.2. Multigaussons. Superposition principle observed numerically in [4], and
proved in [22]: starting from finitely many initial Gaussians distant of ≈ ε, the
solution of is well approximated by the sum of the corresponding solutions, over a

time o(ε−2) (the error is of order ec0t−c1/ε
2

for some c0, c1 > 0 expressed explicitly
in [22]).

Multigausson: using the Galilean invariance, introduce, for some k > 1

Gk =

k∑
j=1

Γj(t, x), Bk =

k∑
j=1

Bj(t, x)

where the Γj ’s are Gaussons associated with pairwise different velocities vj , and
the Bj ’s are (more general) breathers associated with pairwise different velocities
vj .

Theorem 6.3 ([24]). Let d > 1 and λ < 0.

• Multibreathers: there exists a solution u ∈ Cb(R;W ) to (3.1), c, C > 0
such that

‖u(t)− Bk(t)‖L2(Rd) 6 Ce
−ct2 .

• Multigaussons: there exists a solution u ∈ Cb(R; Σ) to (3.1), c, C > 0 such
that

‖u(t)−Gk(t)‖Σ 6 Ce−ct
2

.

Comments:

• Method based on compactness techniques, as introduced in [30].
• The linearized operator around the Gausson seems to be nice (harmonic

oscillator). However, the logarithm is singular at zero, and so linearizing
becomes a delicate matter.

• Localized energy functionals involving a linearized functional, which is not
the linearized energy.

7. Dispersive case

7.1. Main results.
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Theorem 7.1 ([16]). Let λ > 0. For u0 ∈ Σ \ {0}, (3.1) has a unique solution
u ∈ L∞loc(R; Σ)). Introduce the solution τ ∈ C∞(R) to the ODE

(7.1) τ̈ =
2λ

τ
, τ(0) = 1 , τ̇(0) = 0 .

Then, as t → ∞, τ(t) ∼ 2t
√
λ ln t and τ̇(t) ∼ 2

√
λ ln t. Introduce γ(x) := e−|x|

2/2,
and rescale the solution to v = v(t, y) by setting

(7.2) u(t, x) =
1

τ(t)d/2
v

(
t,

x

τ(t)

) ‖u0‖L2(Rd)

‖γ‖L2(Rd)

exp
(
i
τ̇(t)

τ(t)

|x|2

2

)
.

Then we have ∫
Rd

 1
y
|y|2

 |v(t, y)|2dy −→
t→∞

∫
Rd

 1
y
|y|2

 γ2(y)dy,

and

|v(t, ·)|2 ⇀
t→∞

γ2 weakly in L1(Rd).

Corollary 7.2. Let u0 ∈ H1 ∩ F(H1) \ {0}, and 0 < s 6 1. As t→∞,

(ln t)
s/2 . ‖u(t)‖Ḣs(Rd) . (ln t)

s/2
,

where Ḣs(Rd) denotes the standard homogeneous Sobolev space.

Proof in the case s = 1.

∇u(t, x) =
1

τ(t)d/2
∇x
(
v

(
t,

x

τ(t)

)
ei
τ̇(t)
τ(t)

|x|2
2

)
=

1

τ(t)

1

τ(t)d/2
∇yv

(
t,

x

τ(t)

)
ei
τ̇(t)
τ(t)

|x|2
2︸ ︷︷ ︸

‖·‖L2= 1
τ ‖∇v‖L2=O(1).

+ iτ̇
1

τ(t)d/2
x

τ
v

(
t,

x

τ(t)

)
ei
τ̇(t)
τ(t)

|x|2
2︸ ︷︷ ︸

‖·‖L2=τ̇‖yv‖L2∼τ̇‖yγ‖L2≈
√

ln t

.

�

Remark 7.3. These results remain valid when the logarithmic nonlinearity is
perturbed by an energy-subcritical, defocusing powerlike nonlinearity,

i∂tu+
1

2
∆u = λ ln

(
|u|2
)
u+ µ|u|2σu, u|t=0 = u0,

with µ > 0 and 0 < σ < 2
(d−2)+

. Surprisingly enough, the logarithmic nonlinearity

is thus the stronger in the above equation.

7.2. Elements of proof.
7.2.1. A priori estimates. The key step is to change the unknown function

in order to get coercivity. The change of unknown function is motivated by the
explicit computations in the Gaussian case: at leading order, all the Gaussian
solution have the same dispersion, the same oscillations, and the same asymptotic
profile: Theorem 7.1 states that these three properties are shared by all solutions.

Direct computations show that v, given by (7.2), solves

i∂tv +
1

2τ(t)2
∆yv = λv ln

∣∣∣∣ vγ
∣∣∣∣2 − λdv ln τ + 2λv ln

(‖u0‖L2(Rd)

‖γ‖L2(Rd)

)
,
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where we recall that γ(y) = e−|y|
2/2, and the initial datum for v is

v|t=0 = v0 :=
‖γ‖L2(Rd)

‖u0‖L2(Rd)

u0.

Replacing v with ve−iθ(t) for

θ(t) = λd

∫ t

0

ln τ(s)ds− 2λt ln(‖u0‖L2/‖γ‖L2),

we may assume that the last two terms are absent, and we focus our attention on

(7.3) i∂tv +
1

2τ(t)2
∆yv = λv ln

∣∣∣∣ vγ
∣∣∣∣2 , v|t=0 = v0 .

The above equation is still Hamiltonian: introduce

E(t) := Im

∫
Rd
v̄(t, y)∂tv(t, y)dy = Ekin(t) + λEent(t) ,

where

Ekin(t) :=
1

2τ(t)2
‖∇yv(t)‖2L2

is the (modified) kinetic energy and

Eent(t) :=

∫
Rd
|v(t, y)|2 ln

∣∣∣∣v(t, y)

γ(y)

∣∣∣∣2 dy
is a relative entropy. Direct computations yield

(7.4) Ė = −2
τ̇

τ
Ekin .

Lemma 7.4. Under the assumptions of Theorem 7.1,

sup
t>0

(∫
Rd

(
1 + |y|2 +

∣∣ln |v(t, y)|2
∣∣) |v(t, y)|2dy +

1

τ(t)2
‖∇yv(t)‖2L2(Rd)

)
<∞

and

(7.5)

∫ ∞
0

τ̇(t)

τ3(t)
‖∇yv(t)‖2L2(Rd)dt <∞.

Proof. Write the pseudo-energy E as E = E+ + E−, where E+ gathers the
positive terms of E ,

E+(t) =
1

2τ(t)2
‖∇yv(t)‖2L2 + λ

∫
|v|>1

|v|2 ln |v|2 + λ

∫
Rd
|y|2|v|2,

and

E−(t) = λ

∫
|v|<1

|v|2 ln |v|2 6 0.

Since E is nonincreasing,

E+(t) 6 E(0)− E−(t) 6 E(0) + Cε

∫
|v|<1

|v|2−ε 6 E(0) + Cε

∫
Rd
|v|2−ε,

for any 0 < ε < 2. Considering 0 < ε < 4
d+2 , we have∫

Rd
|v|2−ε . ‖v‖2−(1+d/2)ε

L2 ‖yv‖dε/2L2 .
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Noting that ‖v(t)‖L2 = ‖v(0)‖L2(= ‖γ‖L2), we obtain a control of the form

E+(t) 6 E(0) + CE+(t)dε/2,

hence E+ ∈ L∞(R+) by picking ε > 0 sufficiently small. Then E− ∈ L∞(R+), hence

E ∈ L∞(R+), and (7.5) by just saying that Ė is integrable. �

7.2.2. Center of mass. Adapting the computation of [20], introduce

I1(t) := Im

∫
Rd
v(t, y)∇yv(t, y)dy , I2(t) :=

∫
Rd
y|v(t, y)|2dy .

We compute:

İ1 = −2λI2 , İ2 =
1

τ(t)2
I1 .

Set Ĩ2 = τI2: ¨̃I2 = 0, hence

I2(t) =
1

τ(t)

(
˙̃I2(0)t+ Ĩ2(0)

)
=

1

τ(t)
(−I1(0)t+ I2(0)) = O

(
1√
ln t

)
.

In particular,

∫
Rd
y|v(t, y)|2dy −→

t→∞
0 =

∫
Rd
yγ(y)2dy. If I1(0) 6= 0, we also have

I1(t) ∼
t→∞

c
t√
ln t

,

while if I1(0) = 0 6= I2(0),

I1(t) ∼
t→∞

c̃
√

ln t.

Remark 7.5. In view of Cauchy-Schwarz inequality,

|I1(t)| 6 ‖v‖L2‖∇yv‖L2 = ‖γ‖L2‖∇yv‖L2 .

So unless the initial data are centered in zero in phase space (I1(0) = I2(0) = 0),

‖∇yv‖L2 −→
t→∞

∞,

suggesting that v is rapidly oscillatory: in general, (7.2) filters out the leading order
oscillations only, in the limit t→∞.

7.2.3. Second order momentum. Introduce J = Im

∫
v y·∇y v̄. Cauchy-Schwarz:

|J | 6 ‖yv‖L2‖∇v‖L2 . τ(t) (previous lemma).

Use the conservation of the energy of u:

d

dt

(
Ekin +

(τ̇)2

2

∫
|y|2|v|2 − τ̇

τ
J + λ

∫
|v|2 ln |v|2 − λd ln τ

∫
|v|2

+ 2λ‖γ‖2L2 ln

(
‖u0‖L2

‖γ‖L2

))
= 0.

(τ̇)2

2

∫
|y|2|v|2 − λd ln τ

∫
|v|2 = O(τ̇).

But (τ̇)2 = 2λ ln τ and ‖v‖2L2 = ‖γ‖2L2 = 2
d‖yγ‖

2
L2 .

‖yv(t)‖2L2 − ‖yγ‖2L2 = O
(

1√
ln t

)
.
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7.2.4. Universal profile. Madelung:

• Formal: v =
√
ρeiφ. Vacuum. . .

• Rigorous: ρ = |v|2, J = Im v̄∇v.
∂tρ+

1

τ2
∇ · J = 0,

∂tJ + λ∇ρ+ 2λyρ =
1

4τ2
∆∇ρ− 1

τ2
∇ · Re (∇v ⊗∇v̄) .

Baby model: ∂tρ+
1

τ2
∇ · J = 0,

∂tJ + λ∇ρ+ 2λyρ = 0.

In terms of ρ only: ∂t
(
τ2∂tρ

)
= λ∇ · (∇+ 2y) ρ =: λLρ.

Note that τ2 � (τ̇ τ)2: define s such that
τ̇ τ

λ
∂t = ∂s ,

s =

∫
λ

τ̇τ
=

∫
τ̈

2τ̇
=

1

2
ln τ̇(t) .

Notice that

s ∼ 1

4
ln ln t , t→∞ .

Then again discarding formally lower order terms we find

∂sρ = Lρ.

Remark 7.6. Recall that ρ(t, y) = |v(t, y)|2: logarithmic convergence in time,∫
Rd

 1
y
|y|2

 ρ(t, y)dy =

∫
Rd

 1
y
|y|2

 γ2(y)dy +O
(

1√
ln t

)
.

We have derived formally:

∂sρ = Lρ, L = ∇ · (∇+ 2y) .

For such Fokker–Planck equation, convergence to equilibrium with an (spectral
gap),

‖ρ(s)− γ2‖L1 . e−Cs‖ρ0 − γ2‖L1 .

Both aspects coincide, since

s ∼ 1

4
ln ln t , t→∞ .

Back to the complete the hydrodynamical system: Eliminate j, and introduce the
time variable s, ρ̃(s, y) := ρ(t, y):

∂sρ̃−
2λ

(τ̇)2
∂sρ̃+

λ

(τ̇)2
∂2
s ρ̃ = Lρ̃− 1

4λτ2
∆2ρ̃− 1

τ2
∇ · ∇ · Re (∇v ⊗∇v̄) .

For s ∈ [−1, 2] and sn →∞, set ρ̃n(s, y) = ρ̃(s+ sn, y).
De la Vallée-Poussin+ Dunford–Pettis yields (up to a subsequence)

ρ̃n ⇀ ρ̃∞ in Lps(−1, 2;L1
y), ∀p ∈ [1,∞).

∂sρ̃∞ = Lρ̃∞ in D′
(
(−1, 2)× Rd

)
.
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Since J = Im v̄∇yv,Lemma 7.4 yields

τ̇

τ
J̃ ∈ L2

sL
1
y, hence

τ̇

τ
∇ · J̃n −→

n→∞
0 in L2(−1, 2;W−1,1).

Therefore, ∂sρ̃∞ = 0.

It is known from [3] that any solution to

∂sρ̃∞ = Lρ̃∞

satisfying the a priori estimates of Lemma 7.4 converges for large time

lim
s→∞

‖ρ̃∞(s)− γ2‖L1(Rd) = 0.

On the other hand, the Liouville property yields ∂sρ̃∞ = 0, hence ρ̃∞ = γ2. Thus,
the limit is unique, and no extraction is needed:

ρ̃(s) ⇀
s→∞

γ2 weakly in L1(Rd).

Remark 7.7. Some information is lost when approximating the original hy-
drodynamical system by a Fokker-Planck equation: this is the reason why only a
weak convergence is obtained. This should not be too surprising, as the Fokker-
Planck equation is parabolic, while we started from a Hamiltonian equation. On the
other hand, in [23], by changing the strategy of proof, the convergence is improved:
Denoting by W1 the Wasserstein distance, there exists C such that

W1

(
|v(t)|2

πd/2
,
γ2

πd/2

)
6

C√
ln t

, t > e.

For ν1 and ν2 probability measures,

Wp(ν1, ν2) = inf

{(∫
Rd×Rd

|x− y|pdµ(x, y)

)1/p

; (πj)]µ = νj

}
,

where µ varies among all probability measures on Rd×Rd, and πj : Rd×Rd → Rd
denotes the canonical projection onto the j-th factor. See e.g. [34]. In the case
p = 1,

W1(ν1, ν2) = sup

{∫
Rd

Φd(µ1 − µ2), Φ ∈ C(Rd;R), Lip(Φ) 6 1

}
,

Part 2. Isothermal fluids

8. From NLS to compressible fluids

Consider the solution u to (2.1), and resume the Madelung transform ρ = |u|2,
j = Im ū∇u. The unknown (ρ, j) solves the Korteweg system:

∂tρ+∇ · j = 0,

∂tj +∇
(
j ⊗ j
ρ

)
+∇ (ργ) =

1

2
ρ∇
(

∆
√
ρ

√
ρ

)
,

with

λ =
γ

γ − 1
, σ =

γ − 1

2
.
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The capillarity term (RHS of the second equation), involving the term 1
2

(
∆
√
ρ√
ρ

)
also known as quantum pressure or Bohm potential in quantum mechanics, can be
written in several fashions, e.g.:

ρ∇
(

∆
√
ρ

√
ρ

)
=

1

2
∇ ·
(
ρ∇2 ln ρ

)
= ∇ ·

(√
ρ∇2√ρ−∇√ρ⊗∇√ρ

)
=

1

2
∇∆ρ− 2∇ · (∇√ρ⊗∇√ρ) .

See for instance [1, 15]. Either of these formulas may be used, typically when
constructing solutions to the Korteweg equation, according to the level of regularity
considered, and the presence or absence of vacuum.
γ > 1: polytropic fluid.
γ = 1: isothermal fluid.

9. The limit γ → 1

Fluid side: “clear”. NLS side: “|u|2σu→ ln(|u|2)u as σ → 0”.
[35]: the ground state of

−1

2
∆φ+ ωφ = |φ|2σφ

converges, as σ → 0, to the ground state of

−1

2
∆φ+ ωφ = φ ln |φ|,

that is, the Gausson (up to invariants).
Apart from this very specific case, it is difficult to give a rigorous meaning to

the limit γ → 1, or even construct solutions the case γ = 1. In the case of (2.1),
we have seen that the (nonlinear) potential energy is

λ

σ + 1

∫
Rd
|u(t, x)|2σ+2dx,

and becomes, in the case of (3.1),

λ

∫
Rd
|u(t, x)|2

(
ln |u(t, x)|2 − 1

)
dx.

It is no longer sign definite. In the fluid case, using the conservation of mass, the
standard entropy in the isothermal case reads∫

Rd
ρ(t, x) ln ρ(t, x)dx,

and we naturally face the same property. There is however a major difference
regarding the Cauchy problem: (2.1) is semilinear (for σ < 2

(d−2)+
it is solved in

H1(Rd) by using a fixed point argument, and the nonlinearity is viewed as a pertur-
bation, see e.g. [18]), while the above Korteweg equation is quasilinear (nonlinear
terms cannot be viewed as perturbations in general). The Cauchy problem is in
general still a major issue for the equations of compressible fluid mechanics which
we now discuss, in the sense that the optimal assumptions to construct weak solu-
tions are not always known; see e.g. [31] and references therein. For this reason, we
distinguish rigidity results (“if theorem”) and the construction of weak solutions.
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On the other hand, the presence of a pressure term of isothermal form in the
large time limit can be guessed as follows. Consider more generally a barotropic
(convex) pressure law P (ρ), not necessarily equal to ργ . Since the gradient of the
pressure is involved, the value of P (0) is irrelevant from a mathematical point of
view, and we assume P (0) = 0. If the density ρ is dispersive in the large time limit,
then the Taylor expansion of P at zero determines the large time behavior:

P (ρ) ∼
ρ→0

P ′(0)ρ+
1

2
P ′′(0)ρ2 + . . .

If P ′(0) > 0, then isothermal effects are present at leading order, while if P ′(0) = 0,
the dynamics corresponds to polytropic fluids. This is another way, probably more
natural, to interpret Remark 7.3.

10. Setting

From now on, we no longer write any Schrödingerogner equation, and u denotes
the fluid velocity, whose rigorous definition requires some care (an issue which we do
not address here), and which corresponds to the momentum divided by the density,

u =
j

ρ
,

outside of vacuum, that is for ρ > 0 (ρ > 0 in general). We consider

(10.1)


∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇ρ =
ε2

2
ρ∇
(

∆
√
ρ

√
ρ

)
+ ν∇ · (ρDu),

with a capillarity ε > 0, a viscosity ν > 0, and where Du = 1
2 (∇u+∇u>) denotes

the symmetric part of ∇u. The first term of the RHS corresponds to capillarity
(Korteweg term), and the second is a quantum Navier-Stokes correction, see [11]:
contrary to the Newtonian case involving ν∆u (see e.g. [21, 29]), the viscosity can
be thought of as linear in ρ; see [9, 10] for more general models and their analysis.

We shall not detail here the notion of solution adopted in [13, 12], and present
the main results or ideas in a rather superficial way.

Formally, the mass is conserved in (10.1),

d

dt

∫
Rd
ρ(t, x)dx = 0,

and the energy

(10.2) E(t) =
1

2

∫
Rd
ρ|u|2dx+

ε2

2

∫
|∇√ρ|2dx+

∫
Rd
ρ ln ρ dx,

satisfies

(10.3) Ė(t) = −ν
∫
Rd
ρ|Du|2dx.

We do not write the dependence of the integrated functions upon (t, x) to shorten
notations.
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11. Rigidity in isothermal fluids

The end of the proof of Theorem 7.1 relies on a hydrodynamical approach,
suggesting that some results remain valid if we start from the isothermal Korteweg
equation. The argument presented in Section 7.2.4 suggests that the capillary term
has no influence in the large time behavior at leading order: assuming ε > 0 or ε = 0
in (10.1) is not expected to change the large time description. More surprisingly,
the presence of the quantum Navier-Stokes correction has no influence either: we
may suppose ν = 0 or ν > 0.

In view of (7.2) and Madelung transform, we change the unknown functions
(ρ, u) to (R,U) through the relations

(11.1) ρ(t, x) =
1

τ(t)d
R

(
t,

x

τ(t)

)
‖ρ0‖L1

‖Γ‖L1

, u(t, x) =
1

τ(t)
U

(
t,

x

τ(t)

)
+
τ̇(t)

τ(t)
x,

where we denote by y the spatial variable for R and U . The function τ is the same

as in Theorem 7.1, given by (7.1). The function Γ is defined by Γ(y) = e−|y|
2

; in
other words, Γ = γ2 as defined in Theorem 7.1. The system (10.1) becomes, in
terms of these new unknowns,

(11.2)



∂tR+
1

τ2
∇ · (RU) = 0,

∂t(RU) +
1

τ2
∇ ·RU ⊗ U) + 2κyR+∇R

=
ε2

2τ2
R∇

(
∆
√
R√
R

)
+

ν

τ2
∇ · (RDU) + ν

τ̇

τ
∇R.

We define the pseudo-energy E of the system (11.2) by

(11.3) E(t) :=
1

2τ2

∫
R|U |2 +

ε2

2τ2

∫
|∇
√
R|2 +

∫
(R|y|2 +R lnR),

which formally satisfies

(11.4) Ė(t) = −D(t)− ν τ̇(t)

τ(t)3

∫
R(t, y)∇ · U(t, y)dy,

where the dissipation D(t) is defined by

(11.5) D(t) :=
τ̇

τ3

∫
R|U |2 + ε2 τ̇

τ3

∫
|∇
√
R|2 +

ν

τ4

∫
R|DU |2.

Mimicking the proof of Lemma 7.4, it is natural to expect that each term in E
is bounded (recall that E is not signed, because of the logarithm), and that Ė is
integrable. This is formally a natural assumption, but as the Cauchy problem is a
delicate issue, the following result remains an “if theorem” in most cases.

Theorem 11.1 ([13]). Let ε, ν > 0, and let (R,U) be a global weak solution of
(11.2).

(1) If
∫∞

0
D(t) dt <∞, then∫
Rd
yR(t, y)dy −→

t→∞
0 and

∣∣∣∣∫
Rd

(RU)(t, y)dy

∣∣∣∣ −→t→∞∞,
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unless
∫
yR(0, y)dy =

∫
(RU)(0, y)dy = 0, a case where∫

Rd
yR(t, y)dy =

∫
Rd

(RU)(t, y)dy ≡ 0.

(2) If sup
t>0
E(t) +

∫ ∞
0

D(t) dt < ∞, then R(t, ·) ⇀ Γ weakly in L1(Rd) as

t→∞.

(3) If sup
t>0
E(t) <∞ and the energy E defined by (10.2) satisfies E(t) = o (ln t)

as t→∞, then∫
Rd
|y|2R(t, y)dy −→

t→∞

∫
Rd
|y|2Γ(y)dy.

Essentially, the proof is based on arguments similar to those sketched in Sec-
tion 7.2. As evoked above, it is a bit of a surprise that the Navier-Stokes term goes
through the arguments, and we refer to [13] for details.

Remark 11.2. In the same spirit as the discussion at the end of Section 9, the
pressure law considered in [13] is more general than exactly isothermal: we assume
that P ∈ C1([0,∞[;R+) ∩ C2(]0,∞[;R+), and P is convex, with P ′(0) > 0.

12. Existence

As already evoked, constructing solutions in compressible fluid mechanics is a
difficult question.

(. . . )
In [12], we construct weak solutions to (10.1) in the presence of viscosity,

ν > 0. We emphasize two aspects in this construction, which seem to be the more
important contributions of this work:

• We consider solutions on the whole space Rd, while most of the previous
references assume a periodic setting, x ∈ Td.

• We gain positivity properties by working on the intermediary system
(11.2).

Both points are intimately connected, as the change of unknown functions (11.1)
involves a time-dependent rescaling. The reasons why most of the references con-
sider the periodic setting x ∈ Td seem to be mostly that compactness in space then
comes from free, and integrations by parts can be performed freely. The periodic
case is also rather convenient for approximating, among others in Lebesgue spaces,
the initial density by a density bounded away from zero, a step which would require
some modification on Rd. Note also that this property is classically propagated by
the flow in a suitable regularized continuity equation (see e.g. [21, 28]), and such
a property is needed in the presence of cold pressure and regularizing terms (see
e.g. [25, 33]).

For these reasons, to construct a solution (R,U) to (11.2) on Rd, we first replace
Rd with a box Td` of size ` > 0, where ` is aimed at going to infinity at the last step
of the proof.

We refer to [12] for the details, and conclude this section by pointing out
another important tool, which has proven very useful in the context of compressible
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Navier-Stokes with a density-dependent velocity, known as BD-entropy, after [7, 8].
It involves an effective velocity, which reads U + ν∇ lnR in the case of (11.2):

EBD(R,U) =
1

2τ2

∫
Rd

(
R|U + ν∇ logR|2 + ε2|∇

√
R|2
)

+

∫
Rd

(
R|y|2 +R logR

)
.

The evolution of this BD-entropy is given formally, for t > 0, by

(12.1)

EBD(R,U)(t) +

∫ t

0

DBD(R,U)(s)ds

= EBD(R0, U0) + ν

∫ t

0

2d

τ2

∫
Rd
R+ ν

∫ t

0

τ̇

τ3

∫
Rd
R∇ · U,

where the above dissipation is defined by

(12.2)

DBD(R,U) =
τ̇

τ3

∫ (
R|U |2 + ε2|∇

√
R|2
)

+
ν

τ4

∫
Rd
R|AU |2

+
νε2

τ4

∫
R|∇2 logR|2 +

4ν

τ2

∫
|∇
√
R|2,

with AU := 1
2 (∇U−∇U>) the skew-symmetric part of ∇U. Hence putting together

the energy and the BD-entropy equalities, it holds

E(t) + EBD(t) +

∫ t

0

(D(s) +DBD(s)) ds = E(0) + EBD(0) + ν

∫ t

0

2d

τ2

∫
Rd
R, t > 0,

and thanks to the conservation of mass and the fact that
∫∞

0
τ−2(t) dt < ∞, the

last term is uniformly bounded.

Theorem 12.1 ([12]). Assume ν > 0, ε > 0. Let (
√
R0,Λ0 = (

√
RU)0) ∈

L2(Rd) × L2(Rd) satisfy E(0) < ∞, EBD(0) < ∞, as well as the compatibility
conditions √

R0 > 0 a.e. on Rd, (
√
RU)0 = 0 a.e. on {

√
R0 = 0}.

There exists at least one global weak solution to (11.2), which satisfies moreover the
energy and BD-entropy inequalities: There exist absolute constants C,C ′ such that,
for almost all t > 0, there holds:

E(t) +

∫ t

0

D(s) ds 6 C(E(0)),(12.3)

EBD(t) +

∫ t

0

DBD(s) ds 6 C ′(E(0), EBD(0)),(12.4)

with E ,D, EBD,DBD as defined in (11.3)-(11.4)-(12.1)-(12.2).

This result implies existence results for (10.1), see [12]

13. From isothermal to polytropic

The method of proof developed to study (3.1) and (10.1) turns out be bring
some information in the case of (2.1) and polytropic fluids, as shown in [14]. Re-
place (7.1) with

(13.1) τ̈ =
α

2τ1+α
, τ(0) = 1, τ̇(0) = 0.

Its large time behavior turns out to be independent of α > 0:
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Lemma 13.1. Let α > 0. The ordinary differential equation (13.1) has a unique,
global, smooth solution τ ∈ C∞(R;R+). In addition, its large time behavior is given
by

τ̇(t) −→
t→∞

1, hence τ(t) ∼
t→∞

t.

We see that the value of the parameter α > 0 does not influence the large time
behavior, at leading order. And in view of Theorem 7.1, the behavior changes for
α = 0, by a logarithmic factor (which turns out to be the key of e.g. Corollary 7.2).
All the algebra presented so far can then be resumed: we change unknown functions
as in (7.2) and (11.1), and obtain equations analogous to (7.3) and (11.2). The
choice of α is suggested by the value of σ (or, equivalently, γ). Informally, the main
result for fluid dynamics in [14] is again an “if theorem”, as in [13]: every solution
to the analogue of (11.2), where, among others, ∇R is replaced by ∇Rγ , satisfying
suitable conditions, has an asymptotic profile, that is, there exists R∞ ∈ P(Rd) the
set of probability measures on Rd, with two finite momenta, such that

R(t, ·) ⇀ R∞ in P(Rd), as t→∞.

We have in addition R∞ ∈ L1(Rd) (at least) in the following cases:

• ε = ν = 0 and 1 < γ 6 1 + 2/d,
• ε > 0, ν = 0 and γ > 1,
• ε > 0, ν > 0 and 1 < γ 6 1 + 1/d.

The results of [32, 26] in the case of the Euler equation (ε = ν = 0) and the
scattering results for the nonlinear Schrödinger equation (for the Korteweg equation
ε > 0 = ν) show that unlike what has been established in the isothermal case, the
profile R∞ is not universal.
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